3. Operators on a Hilbert Space.

A Hilbert space H is a vector space over the real or complex scalars endowed with an
inner product (, ) than maps H x H into R or C that satisfies the following properties.

1. (z,y) = (y,x) and (z,y) is linear in z, i.e. (@121 + asx2,y) = a1(x1,y) + az(r2,y) and
semilinear in y, that is (x,a1y1 + a1y2) = a1{x,y1) + az2{(x, y=2)

2. (z,z) > 0 and is equal to 0 if and only if 2 = 0. It follows that ||z|| = (z,2)? is a norm
and

3. H is complete under this norm, as a mertic space with d(z,y) = ||z — y||.

We first note that (az + by, ax + by) = ||al|*(z,z) + ||b]|*(y, y) + 2RPab{x,y) > 0 for
all values of a and b. This forces

[z, )? < (@, 2)(y,y)
and
|z +yll <zl + ||yl

for all x,y € H This makes d(z,y) = || — y|| in to a metric and H is assumed to be
complete under this metric.

Example 1. H = L»[0,1]. (f,g) = fol f(s)g(s)ds
Example 2. H= l2[Z+]' <{an}7 {bn}> = 27010:1 anE

We say that = and y are orthogonal or z L y if (z,y) = 0. A collection {z,} is
mutually orthogonal if (x,,2zs) = 0 for @ # . It is an orthonormal family if in addition
|zo|| = 1 for every a. Any two vectors in an orthonormal family are at a distance v/2.
In a separable Hilbert space any orthonormal set is either finite or countable. A maximal
collection of orthonormal {e,} vectors in H is a basis and

x = Z(x, €a)€a

«

is a convergent expansion with

lz]* = (@, 2) = ) (@, ea)l?

For any subspace K C H there is the orthogonal complement Kt = {y: y L K}. (K1)* =
K. H=KaoKt. If A(r) is a bounded linear functional on #H there is a unique y € H
such that A(z) = (x,y). To prove it let us look at the null space K = {z : A(x) = 0}. It
has codimension 1 and has z that is orthogonal to K and ||zg|| = 1 with A(zg) = ¢ # 0.
Claim A(z) = (z, ¢xp). True on K and true for x = zo. They span H.
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Weak topology. =, — x if (y, z,) — (y, x) for all y € H. The unit ball {z : ||z|| < 1}
is compact in the weak topology. That is, given any bounded sequence x,, with ||z, || < C
there is a sub sequence z,; < . To see this we can assume H is separable. It is enough
to check it for a countable dense set of y € H. But for each y, (y, ,,) is bounded and we
can extract a subsequence x,, such that (y, z,;) has a limit. Diagonalization works. We
get a subsequence that works for a countable dense set and hence for all y. The limit is a
bounded linear functional of y and is (y, z¢) for some xy € H

Orthogonal Projection. If L C H then H = K@K+ and x can be uniqulely decomposed
as * = x1 + xo with 21 € K and x5 € K. The maps P, : x — x; are self adjoint, satisfy
P? =P, PLP, = PP, =0 and P, + P, = I. The infimum infyex ||y — || is attained when
y= Pz

Problem. 1. If 2, — x then ||z| < liminf, , ||z,|]. If 2, — = and ||z, || — ||z|| then
|z — || — 0.

Linear Operators on H. A map T from one Hilbert space H to another Hilbert space
K is a bounded linear operator if it is linear i.e. T(ax + by) = aTx + bTy and bounded
ie. ||Tz|| < C|lx||. A linear map is continuous if and only if it is bounded. ||T| =
sup| <1 [7z[|. [[T1T2[] < |71 ||[|T2]]. A linear operator T is compact if the image under
T of the unit ball ||z|| < 1 compact in K. The adjoint 7™ of a bounded linear operator
T :H — H is defined by (I™*x,y) = (x,Ty). One checks that (aT1 4+ 01)* = a1 15 + @215
and (T1T»)* = T5Ty. An operator T is self adjoint if 7% = T ie. (Tz,y) = (x,Ty).
In general the product 7175 of two self adjoint operators is not self adjoint unless they
commute, i.e T1Ty = ToTy. If T is self adjoint so is any p(7') for any polynomial p with
real coeflicients.

The resolvent set of an operator 17" in Hilbert Space over the complex numbers is z € C
such that (zI —T')~! exists as a bounded operator., i.e. (2 —T) is one to one, onto and
( therefore has a bounded inverse), its complement is the spectrum S(7').

If z € S(T) then |2| < |T]|. If |2| > ||,

_ _ T, _ "
Gr-m == D = Y
n>0

exists as a bounded operator and so z ¢ S(T). If S(T) is empty (2I — T)~? is entire and
tends to 0 at co. Therefore (I — L)~ = 0. Cannot be!

If zI — T may not be invertible because it has a null space i.e nontrivial solutions exist for
Tz = zx where z is a complex scalar. Then z € S(T') and z is an eigenvalue with z as the
eigenvector.

If T is a self-adjoint operator S(T') C [—||T||, |T'||]] € R. It is enough to show z = a + ib ¢
S(T) if b # 0.

Problem. 2. Show that for any bounded operator 7', if N(7T") = {z : Tx = 0} is the null
space and R(T") = {y : y = Tz} for some x is the range then N(7™) = R(T).
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To prove z = a+1ib ¢ S(T') it is enough to show that T'x = zz has no nonzero solution and
that R(7T — z[) is closed.Then it can not be a proper subspace because then the orthogonal
complement which is the null space of T* — zI = T — zI would be nontrivial. We next
need to prove that the range is dense. An inequality of the form (T — zI)z|| > c||z|| is
enough, because if y,, = (T' — zI)z, has a limit y then z,, will be a Cauchy sequence with
a limit x and (2 —T)x = y.

(I = T)z, (21 = T)x) = al®|l2]* + [IBII*||=[|* + |T2]1* — {(a +ib)z, Tx) — (T, (a +1ib)z)
= llall*[l=[* + oI *|2]* + 1 T2 [|* — (a + ib){Tz, 2) — (a — ib){T=, x)
= llall*ll=[* + [pI*|=* + | T2||* — 2a(T, z)
= [blPll=]* + I T2 — ax|®
> [[o]|* |

An operator T : H — K is completely continuous or compact if any bounded sequence x,
has a subsequence x,,, such that Tz, converges. In other words the image under 7' of the
unit ball ||z|| <1 in H is compact in K Often £ = H.

An eigenvalue A of an operator T' from H — H is one for which T'x = Az has a nontrivial
solution and the corresponding z is the eigenvector.

Theorem. Let A be a self adjoint compact operator from H — H. Then there are
eigenvalues and eigenspaces

E\={z:Ax = \z}
that are nontrivial only for a countable set {)\;} C R such that for \; # 0, E; are finite

dimensional and the only point of accumulation of {A;} is 0. Ey itself can be trivial, or
nontrivial of finite or infinite dimension. {E);} are mutually orthogonal and

H = ODE),

Proof. Let A\ = supj,<;{Ax, ). Clearly A > 0 and assume that A > 0. There is a
sequence x,, with ||z,[| <1 and (Az,, z,) — A. Choose a subsequence ,,; that converges
weakly to zg. Then Az, ; must converge strongly (in norm) to Azg. Implies (Ax,,,, z,;) —
(Axg,20) = X\ If ||zo]| = ¢ < 1, (Actmg,c7lag) = ¢ 2N > \ = Sup||,<1(Az, z). A
contradiction. So ||xg|| = 1 and the supremum is attained at zy. In particular for y L xq

F(e) = %(Amo +ey,xg+ey) > A= F(0)
+e€
It follows that F’(0) = (Axo,y) = 0. If Azy L y whenever xg L y, Axy = cxo and
¢ = (Azg, o) = A\. We can repeat the process on £ = {y : y L x9} and proceed to
get a sequence of eigenvalues A,, > 0, with mutually orthogonal eigenvectors x,, satisfying
|zn|| = 1 and Az, = \,x,. The process may send at a finite stage are proceed without
end. We note that if ||z,| = 1 and {z,,} is mutually orthogonal

Dy @) < lyll?
n
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and z,, < 0. ||Az,| — 0 and A, — 0. If KT is the span of {x,}, then on K+, (Ax,z) <
0. We repeat the process with —A and recover negative eigenvalues and eigenvectors
corresponding to them, the eigenvectors span K~ forcing A = 0 on [t © K7]+.

A self adjoint operator T' is positive semidefinite, i.e. (7" > 0) if (Tx, z) > 0 for all x € H.

Theorem If T is a self adjoint operator and if p(¢) is a polynomial with real coefficients
such that p(t) > 0 on the interval [—||T, ||T||] then p(T') is positive semi definite.

The proof proceeds along these steps.

If A > 0, there is a selfadjoint operator B > 0 that commutes with A, is in fact a limit
of polynomials of A such that B? = A. By multiplying by a constant we can assume that
0 < A < I. Then since

\r:mﬂ—%u—x)—z1'3'(2"_3>(1—A)”

2npl
n>2
the series
21-3-(211—3)
2nnl
n>2
converges,
1 1-3-(2n—3)
B=VA=+/1—-(1-A)=1——-(1—-—A4) — 1— A"
VA=T=(-A)=1-5(1-a)- Y =220 g

n>2

is well defined, is a self adjoint operator, commutes with A is a limit in operator norm
of polynomials in A and B? = A. If A; > 0 and Ay > 0 are self adjoint operators that
commute, then A; Aj is self-adjoint and A; Ay > 0. A; = B? for i = 1,2. They all mutually
commute and A; Ay = (B1B2)? > 0.

Let the roots of p(t) = 0 be {t;}. They come in different types. Complex pairs {a; £ ib;}
{c; < —|T|I},{d; > ||IT"||} and roots of even multiplicity §; € (—||T||, ||T"). For some ¢ > 0

p(t) = cIl(t — 0;)*"T0(t — a;)* + bII(t — ¢;)T(d; — t)

and
p(T) = (T — 6;1)*™ I[(T — a;1)* + 6T — ¢; 1)I(d; ] —T) >0

Remark. If f is a continuous function on [—||T'||, || 7||], it is a uniform limit of polynomials
pn(t) and then p, (T) will have a limit f(7"). This defines f(T") for f € C([—||T|, [|T|])-

A< sup [f(D)
—ITI<e<|IT

The linear functional (f(7)x,z) is a nonnegative linear functional having a representation

Am = T,T d
) /[—||T|,||T|]f<t)u( &)
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where fi(; ,) is a nonnegative measure of mass ||z supported on [T, [|T'|]]. We define

1
H(z,y) = Z[“(wﬂ/,wﬂ/) — Wa—y,z—y)]

in the real case and in the complex case

1 . .
H(z,y) = Z[“(wﬂ/,wﬂ/) — Wa—y,a—y) — W(atiyatiy) T @—iy.z—iy)]

Now [ f() iz, (dt) = (f(T)z,y) is defined for all bounded measurable functions f. Sat-
isfies (79)(T) = f(T)g(T).

(F(T)g(T)z, ) = / F(O9(E) 1oy (A1)

Pass to the limit from polynomials. Use bounded convergence theorem on the right and
weak limits on the left.

Problem 3. Show that for any x € H, ;) [(S(1))] =0
Hint: Prove it first when S(T") C {\ : |A\| > ¢} for some ¢ and then show that it is enough.

Problem 4. Identify the spectral measures i, ) (dt) for a compact self-adjoint operator
A.

Projection valued measures. If E C [—|T|,||T||]] is a Borel set then xg(T) is well
defined. (xg(T)x,y) = [z Wy (dt). Since X3, = x5, 0(E) = xg(T) is a projection. o(E)
is a projection valued measure. It satisfies

1. For any E € B, o(F) is an orthogonal projection.
2. For disjoint Borel sets {E;}, o(E;)o(E;) =0 for i # j, and o(UE;) = >, o(E;).
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Hilbert-Schmidt Operators. An operator A on a separable Hilbert space H is Hilbert-
Schmidt if for some orthonormal basis {e;}, >_, ;[(Ae;, ej)? < .

Problem 5. Prove that the definition is independent of the basis and that all Hilbert-
Schmidt operators are compact.

Trace Class Operators. A positive semidefinite self adjoint operator A is of trace class if
> ;(Ae;, e;) is finite for some basis. Then it is finite on any basis and Trace A = ). (Ae;, e;)
is well defined. A is Hilbert-Schmidt if and only if A*A or equivalently AA* is of trace
class.

Problem 6. Show that if A is a compact operator, the nonzero eigenvalues of AA* and
A* A are the same and have the same multiplicity. In particular their traces are both finite
and equal or both infinite.

Consider the operator on Ls[0, 1],

(Tf) () = / F)k(z, y)dy
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is well defined as a bounded operator, if fol fol |k(z,y)|?dedy < oo and is in fact Hilbert-
Schmidt. It is self adjoint if k(z,y) = k(y, z) and then the eigenvalues and eigenfunctions

satisfy o
SN = [ W aaty
D_Xif5(@)f5(y) = k(. y) (1)

in L»[[0,1]%]. If k(z,y) is continuous and positive definite (i.e. {k(x;,z;)} is a positive
semidefinite matrix for any finite collection {z;}), T is positive definite operator which is
trace class with trace equal to fol k(z,x)dzx. The convergence in (1) is uniform.

Problem 8. Consider the operator

(Tf) () = / F)k(, y)dy

on L3[0.1], where k(z,y) = min(z,y) — zy, Find all the eigenvalues and eigenfunctions.

Deduce the value of the sum y -, #



